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Abstract The principles of systematic conservation planning are now widely used by

governments and non-government organizations alike to develop biodiversity conservation

plans for countries, states, regions, and ecoregions. Many of the species and ecosystems

these plans were designed to conserve are now being affected by climate change, and there

is a critical need to incorporate new and complementary approaches into these plans that

will aid species and ecosystems in adjusting to potential climate change impacts. We

propose five approaches to climate change adaptation that can be integrated into existing or
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new biodiversity conservation plans: (1) conserving the geophysical stage, (2) protecting

climatic refugia, (3) enhancing regional connectivity, (4) sustaining ecosystem process and

function, and (5) capitalizing on opportunities emerging in response to climate change. We

discuss both key assumptions behind each approach and the trade-offs involved in using

the approach for conservation planning. We also summarize additional data beyond those

typically used in systematic conservation plans required to implement these approaches. A

major strength of these approaches is that they are largely robust to the uncertainty in how

climate impacts may manifest in any given region.

Keywords Climate refugia � Geophysical stage � Connectivity � Ecosystem function

and process � Climate change adaptation

Introduction

Systematic conservation planning (Margules and Pressey 2000) is now commonly prac-

ticed around the world from local to regional and national levels, and is mandated by

several international or national agreements (Groves 2003). This planning approach aims

to ensure that societies ‘‘have a plan’’ for conserving biodiversity and critical habitats in the

face of impacts from urban development, agricultural land conversion, resource extraction,

major infrastructure development, and other activities that alter the patterns and processes

of natural ecosystems. The methods used to produce these plans originated 30 years ago

(Kirkpatrick 1983; Pressey 2002) before climate change was widely recognized. As

worldwide emissions of greenhouse gases over the past decade have been on a steeply

increasing trend (Raupach et al. 2007; Le Quere et al. 2009; Manning et al. 2010), there is

an urgent need to develop updated planning approaches to provide for biodiversity con-

servation in the face of altered climates. In this paper, we outline five major approaches for

incorporating climate change into conservation plans to improve the chances that these

plans and priorities will remain effective as climate changes.
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The development of systematic conservation plans helps guide where we should work to

efficiently achieve conservation objectives, which of these places are the highest priorities,

and increasingly, how we should work in these places (Redford et al. 2003; Wilson et al.

2007). Although early efforts at such planning focused largely on conserving the species,

communities, or ecosystems of a specific region, the science of conservation planning is

now advancing to better incorporate ecological processes and more recently, ecosystem

services (Egoh et al. 2007).

Despite these advances, many of the species and ecosystems for which these con-

servation plans were developed are likely to be facing ever increasing stresses due to the

direct and indirect effects of climate change. The recent Intergovernmental Panel on

Climate Change Fourth Assessment Report (IPCC 2007a) suggests that 10–40% of

species will be at high risk of extinction as global mean temperature reaches 2–3�C

above pre-industrial levels. Under projected future climate changes, ecosystems will be

affected by the resulting changes in sea-level rise, ocean acidification, changes in the

pattern and intensity of precipitation, change in wind direction and speed, and reductions

in snow/ice cover and permafrost. Clear evidence that climate change is already acting as

a stressor include coral reef bleaching, shifts in species ranges, and local extinctions, as

well as more subtle changes in growing seasons, drought stress, migration patterns,

primary production, and species interactions, just to name a few (Donner et al. 2005;

Parmesan 2006; Foden et al. 2008; Sinervo et al. 2010; Breshears et al. 2009).

Conservation planners, scientists, and practitioners are adapting approaches to address

both altered ecological systems and human responses to climate-induced changes within

these ecosystems (Marshall et al. 2010) to help ensure the continued relevance and

effectiveness of conservation efforts.

Climate change adaptation refers to the adjustment of natural or anthropogenic systems

to a changing climate for the purpose of moderating impacts or capitalizing on novel

opportunities (IPCC 2007b). We argue that integrating adaptation into systematic con-

servation planning is imperative for four reasons. First, systematic planning processes are

frequently used to establish conservation priorities of government and non-governmental

organizations alike, and adaptation has a central role to play in developing these priorities.

Second, compared to most single-site-focused conservation plans, systematic conservation

plans typically inform decisions at a spatial scale that is well matched to the resolution of

many climate change projections. Although systematic conservation planning is not

restricted to a particular spatial scale, it is most commonly used to guide conservation

investment at regional and ecoregional scales on the order of 103 to 104 km2, a scale

similar to the spatial scale of many projected climate change impacts (Wiens and Bachelet

2010). Third, effectively responding to the challenges posed by climate change will

require regionally coordinated management responses that extend beyond the borders of

most typical site-focused conservation projects (Heller and Zavaleta 2009). Finally, the

methods and data supporting systematic planning have typically been based on static

interpretations of biodiversity (Pressey et al. 2007), whereas more dynamic interpretations

of biodiversity are necessary to accommodate many climate change impacts and

adaptation considerations.

Conservation scientists, planners, and practitioners are actively exploring options for

climate change adaptation (e.g., Araújo 2009; Ferdaña et al. 2010; Hansen et al. 2010).

Several recent papers have summarized recommendations for adaptation strategies and

actions (Kareiva et al. 2008; Heller and Zavaleta 2009; Mawdsley et al. 2009; Millar

et al. 2007; Lawler et al. 2009; Hansen et al. 2010; Poiani et al. 2011; Rowland et al.

2011). In many cases, these recommendations from the scientific community are vague,
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with the step of translating a particular principle to a specific type of decision or

planning process left to the practitioner (Heller and Zavaleta 2009). In other cases, they

rely heavily on modeled simulations of future climate changes that are too uncertain to

be a reliable foundation for conservation planning (Beier and Brost 2010). In contrast,

we describe five explicit adaptation approaches that can be incorporated into regional-

scale conservation plans, trade-offs involved in their application, assumptions implicit in

their use, and additional data that may be required for their implementation: (1) con-

serving the geophysical stage, (2) protecting climatic refugia, (3) enhancing regional

connectivity, (4) sustaining ecosystem process and function, and (5) capitalizing on

conservation opportunities emerging in response to climate change (e.g., Reducing

Emissions from Deforestation and Forest Degradation [REDD]). Although by no means

an exhaustive list, these approaches encompass what we believe are the most significant

opportunities for integrating adaptation considerations into new or existing biodiversity

conservation plans.

Conserving the geophysical stage

Hunter et al. (1988) first suggested a strategy to address climate change by conserving a

diversity of landscape units defined by topography and soils. Since that time, several con-

servation plans have relied on combinations of soil and topographic variables as surrogates

for biodiversity features for regions that lack biological inventories to underpin regional

planning exercises (see Table 1 in Beier and Brost 2010). Given the uncertainties associated

with projections of future climate changes and their spatial expression, the use of geophysical

variables as planning elements has resurfaced as a practical alternative to conservation

planning approaches that rely on modeling of potential climate change impacts.

At its core, this approach involves focusing conservation efforts on the underlying

physical environment—the metaphorical stage—instead of the species or the actors. A

recent analysis by Anderson and Ferree (2010) in the northeastern United States provides

strong evidence for the merits of this ‘‘saving the stage’’ strategy. They demonstrated that

the number of species found in 14 northeastern states and adjacent provinces can be

accurately predicted from the number of geologic classes, the elevation range, the latitude,

and the amount of limestone bedrock (Fig. 1). If geophysical diversity maintains species

diversity, then conserving geophysical settings offers an approach to conservation that

conserves diversity under both current and future climates, although the species consti-

tuting the diversity may change through time.

Beier and Brost (2010) advocate using recurring landscape units as conservation fea-

tures. These units, which they call land facets, are defined on the basis of geology, soil, and

topography and are similar to those used by Anderson and Ferree (2010). Based on findings

from several previous studies, they argue that such units can serve as useful surrogates for

today’s biodiversity and tomorrow’s climate-driven range shifts, and help conserve eco-

logical and evolutionary processes. Because land facets cannot serve as surrogates for all

species (Beier and Brost 2010), such an approach should be used as a complement to

existing systematic conservation planning processes that also focus on land cover and

species as conservation features.

For conservation organizations, this approach to adaptation requires a shift from

focusing on individual species and communities or ecosystems defined by dominant

vegetation to geophysical settings. However, this shift is neither philosophically nor

practically as large as it might seem. For example, Anderson and Ferree (2010)

1654 Biodivers Conserv (2012) 21:1651–1671

123



demonstrated that most rare species and community types that many conservation orga-

nizations in the northeastern U.S. strive to conserve already represent unique environ-

mental settings, precisely because species and settings are so correlated. In addition,

systematic planning efforts in the marine and freshwater realm already focus on physical

habitats because of the lack of biodiversity information for many of these communities

(Higgins et al. 2005).

Assumptions

The conserving the stage approach is predicated on the assumption that geophysical units

can serve as adequate surrogates for the current and future distribution of biodiversity, even

under climate change scenarios. Previous studies (e.g., Pressey et al. 2000; Araújo et al.

2001) have demonstrated that such surrogates are adequate for many species, but certainly

not all. An underlying assumption is that the diversity and distribution of terrestrial eco-

logical communities is to a large extent driven by diversity in the underlying geophysical

variables. This will not always be true, especially for large mammals and birds that tend to

be less strongly tied to particular soil types and microhabitats. The strength of the rela-

tionship between geophysical settings and biodiversity is likely to vary among regions.

Areas with less variation in underlying geology and topography, areas with a high degree

of land conversion, a relatively young flora and fauna (e.g., due to recent glaciations), or

areas where changes in local climatic gradients could alter today’s geophysical stage may

not be as well-suited as others to the use of this approach. In addition, correlations of the

abiotic environment with species richness across broad spatial scales such as in (U.S.)

states (Anderson and Ferree 2010) do not necessarily inform the on-the-ground conser-

vation efforts for biodiversity that usually happen at much finer spatial scales. Conserving

the stage assumes that conservation objectives are primarily related to biodiversity rep-

resentation. If regional conservation objectives seek to conserve particular species or

communities, approaches that are more tailored to these goals and the particular stressors

on these conservation features will be needed.

Fig. 1 The proportion of rare species classes restricted to single or multiple geology classes in 14 state and
provinces in northeastern North America. The number of both rare species and all species in each state and
province can be accurately predicted with certainty by four geophysical factors, including geology class.
These results strongly suggest that conserving the diversity of geophysical settings is a robust strategy for
conserving the current and future composition of biodiversity under climate change scenarios. Reprinted
from PloS ONE (Anderson and Ferree 2010)
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Trade-offs

Of the five approaches to adaptation addressed here, conserving the stage arguably

involves the fewest trade-offs to be evaluated. Further, this approach integrates well with

a goal of considering current and historic refugia, as many of the same characteristics

and principles apply. It is easily used in conjunction with existing species or habitat

features, and doing so is unlikely to reduce the efficiency of the conservation planning

process. One advantage of the conserving the stage approach is that it does not resist

change, but rather anticipates ecological and evolutionary dynamism and uses our

understanding of how biodiversity is generated to maximize the opportunity for future

diversity.

Protecting climatic refugia

In many ecosystems, climate change is already leading to rapid ecological change that can

be construed as negative for biodiversity conservation (e.g., bleaching events for coral

reefs—Berkelmans et al. 2004; drought-related mortality of Pinus edulis in the south-

western United States—Breshears et al. 2005). Because the probability, speed, type, and

extent of these changes is unlikely to be uniform across a region, a relatively straight

forward and intuitive approach to adaptation in regional conservation plans is to focus on

identifying and protecting biodiversity in those areas least likely to undergo rapid climate-

induced changes. Such places may serve as important climate refugia for species and

habitats that become marginalized through ecological changes elsewhere. Climate refugia

can exist both in places where changes in climate are attenuated (e.g., Saxon 2008), or

where biodiversity is likely to be particularly robust to changes in climate, perhaps due to a

broad climate tolerance (e.g., West and Salm 2003). For example, as part of a national

conservation plan for Papua New Guinea (PNG), Game et al. (2011) identified climate

refugia based on projected changes in seven climate dependent variables (potential

evapotranspiration, precipitation/potential evapotranspiration, precipitation of the coldest

quarter of the year, precipitation of the warmest quarter of the year, mean temperature of

the coldest quarter of the year, mean temperature of the warmest quarter of the year, and

average monthly temperature) (Fig. 2). The current value for these variables in 5-km pixels

was compared with their projected value in the year 2100, and the expected change

normalised with the value 1 being assigned to the pixel expected to experience the greatest

climatic change across PNG.

There are multiple ways to define refugia from climate change, and different definitions

require different methods of identification and data inputs. Ashcroft (2010) recommends

that discussions of refugia explicitly distinguish between macrorefugia and microrefugia

(i.e., the scale at which refugia are being identified, and therefore what resolution climate

data are necessary or appropriate), in situ and ex situ refugia (whether refugia from future

climate change are likely to be located within or outside of a species’ current distribution),

and refugia based on climatic versus habitat stability. The issue of scale is particularly

important as it has been shown to influence patterns of species richness and species

turnover, particularly as they relate to changes along environmental gradients (Jetz and

Rahbeck 2002). For example, species turnover in amphibians and birds is closely linked to

environmental turnover, and this effect is more pronounced in tropical than temperate

realms (Buckley and Jetz 2008), suggesting that tropical systems may be more susceptible

to impacts from climate change. These results suggest that some areas identified as refugia
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and also containing high species richness and turnover may represent ‘‘win–win’’ situations

for conservationists.

Conserving climate refugia represents only a partial solution to climate change adap-

tation. Many areas exposed to large climatic changes may become or remain important

areas for biodiversity even if they contain a different suite of species. Similarly, identifying

refugia relies largely on climate projections with all their associated uncertainties. While it

is particularly hard to predict what species and communities are likely to colonize an area

as a result of climate change, we have a better ability to predict what species and com-

munities may be lost from an area. Conserving projected refugia will offer some eco-

systems a better chance of adapting to climate change, but it certainly does not guarantee

their viability. As such, the potential for an area to serve as a refugium should not be used

as the sole basis for identifying important conservation areas.

A recent modification of the climate refugia approach involves identifying areas where

high topographic diversity creates a wide array of microclimates in close proximity

(Ashcroft et al. 2009; Fridley 2009). Because coarse-scale climate envelope models often

fail to capture topographic or ‘‘microclimatic buffering’’ (Willis and Bhagwat 2009), they

may overestimate or misrepresent the projected extinction rates for a given area. Thus, the

climates experienced by individual organisms may differ dramatically from the regional

norm and species are likely to shift their locations to take advantage of nearby

microclimates.

Climate change risk

0.00 - 0.03

0.04 - 0.07

0.08 - 0.11

0.12 - 0.14

0.15 - 0.17

0.18 - 0.21

0.22 - 0.25

0.26 - 0.30

0.31 - 0.37

0.38 - 0.58

Fig. 2 Projected severity of climate change for Papua New Guinea, normalized to a scale from 0 (less
change expected) to 1 (more change expected) and summarized by 5000 ha planning units. This data layer
was developed using methods described in Saxon et al. (2005) and was then used in a decision support
system (Marxan) to identify climate refugia as part of a broader regional conservation assessment for the
Papua New Guinea government

Biodivers Conserv (2012) 21:1651–1671 1657

123



Assumptions

The utility of identifying climate refugia during systematic conservation assessments

depends on at least three assumptions. First, identifying refugia solely on projected cli-

matic changes assumes that ecological changes are directly related to the degree of climate

change and that changes will be least severe in those places where climate remains rela-

tively constant. Second, prioritizing those areas least likely to change assumes that climate

impacts are beyond our control and therefore worth avoiding where possible. Neither of

these assumptions will always hold. Climate is projected to change through time and areas

that are refugia for a species in the near term may not persist as refugia over longer time

scales. There are also many ways in which we can affect the impacts of climate change.

For example, protecting coral reefs from fishing can improve their ability to resist climate

change (e.g., Game et al. 2008a). Third, identifying refugia on the basis of species’

expected response to climate change, assumes that we have sufficient knowledge to do so,

an assumption that likely will only hold for a relatively small number of species.

Trade-offs

Potential gains in biodiversity persistence achieved through conserving climate refugia

may have to be balanced against other considerations, such as the cost of conserving

areas. If areas of relative climate stability also represent desirable places for other uses,

such as farming or fishing, then focusing conservation efforts on these places will likely

require greater resources and compromises. Because we are dealing with probabilities not

certainties when considering refugia, if it proved particularly costly to conserve areas at

lower risk from climate-related changes, an analysis of this trade-off might suggest it is

most efficient to instead increase the total area in conservation by protecting more

vulnerable but also cheaper sites (e.g., Game et al. 2008b). Additionally, because

identifying areas robust to climate change will often rely on modeled climate projections,

it introduces both greater uncertainty and greater cost into conservation decisions. It is

important to be explicit about these costs and trade-offs, and confident these prices are

worth paying. In a sense, climate refugia imply an assumption that change can be

resisted rather than adapted to. Even if climate does not impact an area identified as a

refugium, changes due to invasive species, airborne pollution, and other environmental

stresses may alter refugia, and these changes could render some climate ‘‘refugia’’ as low

priorities for conservation.

Enhancing regional connectivity

Increasing landscape, watershed, and seascape connectivity is the most commonly cited

climate change adaptation approach for biodiversity management (Heller and Zavaleta

2009). From an adaptation perspective, maintaining or improving the linkages between

conservation areas serves at least two purposes. First, it provides the best opportunity for

the natural adaptation of species and communities that will respond to climate change by

shifting their distribution (Fig. 3). Second, improving connectivity can improve the eco-

logical integrity of conservation areas, thereby enhancing the resilience of ecosystems to

changes in disturbance regimes characteristic of climate change in many places. Even in

the absence of climate change, connectivity is considered important to prevent isolation of

populations and ecosystems, provide for species with large home ranges (e.g., wide-
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ranging carnivores), provide for access of species to different habitats to complete life

cycles, to maintain ecological processes such as water flow (Khoury et al. 2010), and to

alleviate problems deriving from multiple meta-populations that are below viability

thresholds (Hilty et al. 2006). As a result, many regional assessments already consider the

connectivity of conservation areas, albeit with varying degrees of sophistication.

The term connectivity has taken on many meanings in the context of biodiversity

conservation. Crooks and Sanjayan (2006) identify two primary components of connec-

tivity: ‘‘(1) the structural (or physical) component: the spatial arrangement of different

types of habitat or other elements in the landscape, and (2) the functional (or behavioral)

component: the behavioral response of individual, species or ecological processes to the

physical structure of the landscape.’’ Connectivity has longitudinal, lateral (e.g., rivers to

floodplains), vertical (e.g., recharge of subterranean ground water) and temporal (e.g.,

Fig. 3 Dispersal corridors necessary for movement to newly suitable areas under climate change scenarios,
identified for 280 species of Proteaceae in the Cape Floristic Region of South Africa. Colors on the Y-axis
indicate increasing numbers of dispersal chains or corridors while colors on the X-axis represent increasing
numbers of species based on species richness data for the year 2000. Used by permission from John Wiley
and Sons (Williams et al. 2005)
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changing habitat distributions through time) dimensions. In regional conservation, con-

nectivity has most commonly focused on developing corridors between areas to accom-

modate animal movement (e.g., Bruinderink et al. 2003; Fuller et al. 2006), and aquatic

connectivity for fish migrations (e.g., Schick and Lindley 2007; Khoury et al. 2010).

However, connectivity is also critical for the movement of water, sediment and nutrients,

especially in marine and freshwater systems (Abrantes and Sheaves 2010; Beger et al.

2010; Khoury et al. 2010). Temporal connectivity has not received the same attention as

spatial connectivity, but is likely critical in the creation of climatic refugia, such as during

prolonged drought periods (Klein et al. 2009).

At regional scales, conservation planners can affect connectivity in four general ways:

altering the size, placement and number of conservation areas; changing the shape and

orientation of conservation areas; adding specific linkages between conservation areas; and

improving management of the intervening land, water and sea matrix. Regional conser-

vation plans can inform each of these decisions.

Although improving connectivity is a commonly recommended and widely applicable

approach to adaptation (Heller and Zavaleta 2009; Krosby et al. 2010; Beier et al. 2011),

implementing it can be difficult. First, we lack a complete understanding of exactly what

types and locations of connectivity are needed to enable climate change-induced species

movements, and whether they are similar to or different from connectivity needs under

current climate conditions (Cross et al. 2012). Second, the optimal connectivity pattern

will be different for nearly every species and community. Third, for most species we know

very little about their connectivity needs and can answer the ‘‘how much is enough’’

question for only a few species—often large carnivores that are highly mobile and

arguably the least challenged by movements needed for climate adaptation. A fourth

challenge is determining how to measure and map connectivity patterns. There are many

new metrics for doing such measurements, but each comes with its own set of assumptions

and technical requirements (Beier et al. 2008; McRae et al. 2008). Fifth, most connectivity

modeling of species or habitats is focused on their current distributions, which will likely

prove inadequate for many species whose distributions will be changing. Finally, the

suitability of corridor areas may change over time as climate changes (Williams et al.

2005).

Assumptions

The most significant assumption associated with the connectivity approach is that

improving connectivity will facilitate natural adaptation and increased persistence of

species and communities in conservation areas. Specifically, we assume that we can

identify what factors limit movement of species or the continuation of natural processes,

and that we can identify, and ideally be able to measure, a change in connectivity

(Hodgson et al. 2009). Even if we can meet these assumptions, there are also risks that

improved connectivity could hasten the extirpation of some species and communities by

facilitating invasion by rapidly moving species which might outcompete, or at least sub-

stantially alter, existing communities (e.g., Burbidge et al. 2008; Jackson and Pringle

2010). Explicitly promoting connectivity might create a conservation bias towards pres-

ervation of species and communities that adapt through movement rather than those that

adapt through behavioral or physiological changes. Fundamentally, this approach assumes

that we possess enough knowledge about ecological connectivity to make wise decisions

on how to best promote and sustain natural linkages. In many cases, we simply do not have

this level of knowledge.
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Trade-offs

First, connectivity is not always positive with regard to conservation of biodiversity.

Facilitating the ease with which individuals can move between conservation areas, can also

expose conservation areas to the rapid transmission of deleterious influences such as

diseases, invasive species or large-scale disturbance events. For example, reducing the

spacing between coral reef marine protected areas (MPAs) might allow improved larval

connectivity and therefore quicker recovery of reef populations following disturbance, but

it also increases the risk that numerous MPAs are impacted by the same large coral

bleaching or cyclone event, making recovery of the whole system more challenging (Al-

many et al. 2009). Second, there might be trade-offs between the optimal connectivity

patterns for different species and communities (Gerber et al. 2005; Vos et al. 2008;

McCook et al. 2009). A suite of multiple focal species likely to collectively serve as a

proxy for the entire set of conservation features in a region should be used to develop a

connectivity plan (Beier et al. 2008). Third, by adding an additional consideration when

selecting and prioritizing conservation areas, it may be necessary to trade-off increased

connectivity with other properties of the conservation area network, for instance, the total

size and number of core conservation lands and waters, representation of different elements

of biodiversity, or habitat quality (Hodgson et al. 2009). Fourth, connectivity might be

achieved through changes in management of the surrounding matrix, but this strategy relies

on management actions that might be largely beyond the control of conservation agencies

and institutions, and thus would represent a major investment in outreach and cooperation

with private landowners. In sum, corridors and connectivity have a long tradition in

conservation planning even without worries about climate change, but their practical

application and costliness relative to alternatives requires careful consideration in the

planning process.

Sustaining ecosystem process and function

In its early years, systematic conservation planning was largely focused on conserving the

patterns of biodiversity with little attention given to ecological process and function

(Groves et al. 2002). Conservation planners and scientists increasingly promote incorpo-

ration of ecological processes and function (e.g., Leroux et al. 2007; Manning et al. 2009).

In the climate adaptation arena, Halpin (1997) was among the first to recommend the need

to manage for the maintenance of natural disturbance regimes such as fire as an adaptation

response to climate change. More recently, Millar et al. (2007) suggested that for forests

that are far outside historical ranges of variability in terms of fire regime or forest structure,

it may be necessary to manage for future expected conditions as well as implement res-

toration treatments. In freshwater ecosystems, ecologists are calling for large-scale

reconnection of floodplains through levee setbacks that will reduce anticipated flooding

risks while allowing more natural flow regimes (Opperman et al. 2009). In marine eco-

systems, shellfish restoration efforts can restore important ecosystem functions including

nutrient removal, shoreline stabilization and coastal defense against rising sea level and

storm surges (Beck et al. 2011).

Sustaining current and future ecosystem process and function may be at the challenging

end of the adaptation spectrum, but it is not a new idea in conservation planning (Baker

1992). The Nature Conservancy, for example, has incorporated the conservation of eco-

logical process in its ecoregional conservation plans for over a decade (Groves et al. 2002).
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Cowling et al. (1999) and Pressey et al. (2003) were among the first to test methods for

incorporating ecological process in specific systematic planning efforts. Despite over

20 years of recommendations to place more emphasis on ecological process and function

in conservation plans, challenges remain. Establishing explicit conservation goals and

objectives for these processes and functions in the face of climate change is among the

most significant of these. For example, in the Murray-Darling Basin in Australia, the

Victorian Environmental Assessment Council (VEAC) compiled and synthesized data on

natural flood requirements for all flood-dependent vegetation classes and rare and threa-

tened species in major parts of the Basin (Aldous et al. 2011). Although VEAC had already

recommended setting aside 4000 giga-liters every 5 years for environmental flows, new

estimates of runoff that had taken climate change into account suggested that the amount of

water available for environmental flows could be reduced as much as 32% over earlier

projections. Even modest climate change scenarios implied that water necessary for natural

overbank flows that sustain the ecosystem would not be available in many parts of the

system and that new infrastructure would be required in the future to deliver those envi-

ronmental flows (Aldous et al. 2011).

Assumptions

There are two important assumptions to the process and function approach that have

limited its use. The first is that we have sufficient understanding and data on the most

important ecological processes to design and implement conservation strategies for them

(Possingham et al. 2005). Although ecologists increasingly understand the role of fire and

nutrient cycling in many ecosystems, as well as the importance of natural flow regimes in

aquatic ecosystems, many ecosystem processes and functions remain poorly understood.

The second assumption is that we can identify spatial data (e.g., the spatial distribution of

riparian areas) to serve as surrogates for these processes and functions (Klein et al. 2009)

or models to simulate disturbance regimes that can be used in conservation planning

exercises (Leroux et al. 2007). Significant progress is being made in this regard. In the

Cape Floristic region of South Africa, for example, Pressey et al. (2003) were able to

identify an extensive variety of ecological processes ranging from animal migrations to the

movement of coastal sediments, and spatial surrogates to represent these processes in

regional plans.

Trade-offs

Because an approach focused on sustaining process and function involves identifying new

targets and objectives in systematic conservation planning, the trade-offs are potentially

significant. Shifting conservation objectives from maintaining individual elements of

biodiversity (e.g., species or habitats) towards maintaining specific ecological processes or

functions may require compromising on both the extent and effectiveness of biodiversity

representation within the networks of conservation areas that emerge from regional con-

servation plans (see Klein et al. 2009 for an exploration of potential trade-offs). Similarly,

if this approach leads to setting priorities for areas that we otherwise might not conserve,

such as degraded lands that are critical to certain functions, a potential trade-off is that the

conservation of ecologically intact land and seascapes may be jeopardized. Despite these

potential trade-offs, conservation plans with priorities based on both the representation of

biodiversity and the underlying processes and functions that support it, are more likely to

achieve lasting conservation results.
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Capitalizing on opportunities emerging in response to climate change

Opportunities for conservation planning that may emerge as climate changes will range from

ecological to social. Climate change may improve conditions for some species, ecosystems,

and processes of conservation concern, allowing conservation resources currently directed at

these elements to be redirected elsewhere. Societal responses to climate change can provide

novel opportunities to increase both the success and cost effectiveness of conservation. For

example, strategies for REDD—Reduced Emissions from Deforestation and Forest Degra-

dation (Angelsen 2008) use payments from developed countries to developing countries to

reduce greenhouse gas emissions from deforestation and forest degradation. This approach

provides a potentially powerful and well-funded mechanism to maintain ecologically intact

forests that are also likely to have substantial biodiversity benefits, such as conserving greater

numbers of species (Venter et al. 2009; Busch et al. 2010). In addition to these biodiversity

benefits, increasing the representation and extent of ecosystem types under conservation

management have been identified as two key principles for climate adaptation (Kareiva et al.

2008). While REDD itself is a climate change mitigation activity, using REDD to help

conserve biodiversity at a regional scale is an adaptation strategy taking advantage of an

emerging opportunity. In addition to REDD, opportunities might also emerge from carbon/

biodiversity off-sets (Kiesecker et al. 2010), renewable energy developments (Wiens et al.

2011), human responses to climate change (Hale and Meliane 2009), and perhaps other

ecosystem service opportunities (Tallis et al. 2008). These opportunities could influence the

priorities for conservation areas that emerge from systematic conservation planning pro-

cesses, and plans may need to explicitly consider how such opportunities might best intersect

with conservation priorities. For example, initial efforts to incorporate ecosystem services

into systematic conservation planning are promising (Chan et al. 2006; Egoh et al. 2010) but

may involve trade-offs with biodiversity conservation.

The climate change policy arena presents a special opportunity to focus on conservation

actions that promote the ability of ecosystems, and the societies that depend on them, to deal

with climate-induced changes. This approach is referred to as Ecosystem-Based Adaptation

(EBA), a term favored by the International Union for the Conservation of Nature (IUCN;

www.iucn.org/) and the Climate Action Network (www.climatenetwork.org/). These groups

define EBA as: ‘‘a range of local and landscape scale strategies for managing ecosystems to

increase resilience and maintain essential ecosystem services and reduce the vulnerability of

people, their livelihoods and nature in the face of climate change’’ (CAN 2009). Strategies

commonly proposed under the banner of EBA include maintaining or restoring wetlands and

estuaries that help protect against flooding; maintaining coral reef systems that protect

islands and coastlines from wave erosion; and protecting or restoring forests that can reduce

flood damage and erosion from more frequent and severe storms while preserving access to

clean water and food (Hale and Meliane 2009). In some cases, implementing these strategies

is straightforward and involves actions similar to those necessary to establish most new

conservation areas, except that in this case the focus is on conserving natural ecosystems that

also provide a direct benefit to human communities.

EBA opportunities may represent the greatest departure from traditional systematic

planning methods. For example, rather than planning to conserve a representative set of

coral reef habitats in a region, we might choose to prioritize those reefs systems most

critical for the protection of coastal human communities. To do this, we would need

additional data not traditionally included in regional assessments such as the vulnerability

of coastal communities to storm surges (e.g., USAID 2009) or the volume of carbon and

rates of deforestation associated with implementing a REDD strategy (Venter et al. 2009).
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We will also likely need alternative decision support tools to communicate future climate

scenarios and potential EBA solutions, such as interactive Web-based mapping applica-

tions (e.g., Ferdaña et al. 2010) (Fig. 4). Regional conservation plans can be used to

identify the best places to implement EBA strategies. Early results are promising. For

example, we increasingly recognize that we can re-operate dams to both improve their

benefits to people and their natural flow regimes and connectivity for nature (Richter et al.

2010). In terrestrial systems, we now understand that the intensity and frequency of fire

regimes are being amplified by climate change which may require larger areas to

accommodate these disturbances and pro-active steps to ‘‘fireproof’’ local communities

(Brown et al. 2004).

Assumptions

The value of including emerging opportunities in systematic conservation planning rests on

at least two assumptions. The first is that conservation is always challenged for resources

and opportunities and looking for ways to leverage investment or get greater return on the

investment. The second, and related assumption, is that aligning conservation work with

these emerging opportunities is efficient from a cost and implementation point of view and

is not cancelled out by either the transaction costs of actively pursuing such opportunities,

or the trade-offs described below. In the specific case of EBA opportunities, we assume

that we can identify and conserve natural ecosystems that will improve resilience of both

ecological and human communities even though this assumption is currently being debated

(Feagin et al. 2010). In addition, using this approach assumes that we have sufficient

Fig. 4 Identification of natural ecosystems (marshes) that offer a range of protection to coastal human
communities in Long Island, New York, with a Web mapping tool developed as part of a Coastal Resilience
project (http://coastalresilience.org/). The tool helps explore climate change risks to coast communities and
highlights area where mitigation and biodiversity conservation goals overlap
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knowledge to determine which ecosystems and communities are most vulnerable and what

combination and placement of conservation areas will deliver the greatest benefits to both

communities. Finally, some EBA strategies are dependent upon the provision of specific

ecosystem services, yet the study and valuation of such services remains an emerging

science (Kareiva et al. 2010).

Trade-offs

Trying to achieve conservation outcomes through alliances with activities not principally

directed at conservation involves many trade-offs. By their very nature, these emerging

opportunities are unlikely to be outright win–win situations for conservation because they

include objectives in addition to those that are specific to biodiversity conservation (Venter

et al. 2009). Consequently, conservation planners, scientists, and practitioners may have to

be willing to compromise on conservation objectives in pursuit of these opportunities.

Emerging opportunities may be accompanied by emerging challenges, such as new

industries and sectors (e.g., biofuels; Fargione et al. 2009) arising in response to a changing

climate that pose novel or additional impacts to biodiversity. These emerging opportunities

and challenges could also be incorporated into the menu of opportunities and constraints.

Data considerations

Each of the approaches to climate change adaptation in systematic conservation planning

may require the collection and inclusion of additional data sets (Table 1). These data sets

Table 1 Additional data for regional conservation assessments that may be needed to support the climate
change adaptation approaches described in this document

Adaptation approach Additional data needed for regional assessments

Conserving the geophysical
stage

Distribution of geophysical and topographic properties (e.g., bedrock types,
soil, elevation, aspect)

Protecting climatic refugia Spatial distribution of current/historic refugia, and spatial distribution of
potential future refugia, projected climate change impacts and/or climate
change vulnerabilities

Enhancing connectivity Knowledge of the connectivity requirements for key ecological targets and
the capacity to measure and compare the connectivity of different
conservation area designs

Sustaining ecosystem process
and function

Natural range of variability of ecosystem processes, information on
disturbance regimes, dynamic models that simulate natural disturbance
regimes; spatial surrogates for ecological processes (e.g., location of
migration corridors of specific animals)

Emerging opportunities Distribution of opportunities and constraints for those activities with
potential conservation benefits. For example, to take advantage of REDD
payments we would need data on the volume of carbon and the rates of
deforestation. We would also need an understanding of the conservation
benefits of land uses emerging from REDD (e.g., how well do areas re-
forested for carbon off-sets conserve biodiversity?). EBA strategies
require data on the distribution of key ecosystem services (e.g.,
mangroves that provide protection from coastal storms), and the
vulnerability of human communities to climate change stressors (e.g.,
coastal flooding)

For more detailed information on these data needs—see Game et al. (2010)
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are additional to, not in place of, data on the distribution of biodiversity, as well as on

the opportunities and constraints on conservation action, which are required for all

regional assessments. Future climate change projections can be readily explored and

obtained from various sources, such as the Climate Wizard tool (Girvetz et al. 2009), but

additional data, information and analyses are needed to conduct climate change impact or

vulnerability analyses (IPCC 2007b; Ferdaña et al. 2010; Game et al. 2010; Glick and

Stein 2010).

Flexible management and understanding uncertainty

To a large degree, incorporating adaptation in regional conservation plans involves

acknowledging that we undertake conservation in a world where many species distribu-

tions, disturbance regimes, and ecological processes are changing at much faster rates than

in the past and in ways we often have little certainty about. This recognition necessitates a

shift in traditional planning along four lines:

(1) Recognizing that previous conservation planning approaches (Araújo 2009), strat-

egies or projects may not be viewed as successful in the future depending upon how

climate change impacts manifest themselves.

(2) Imbibing a willingness to constantly monitor, reassess, respond to change, and alter

course in an adaptive fashion (Millar et al. 2007), including a re-consideration of the

goals of a conservation project in the face of climate change.

(3) Changing perspectives on what biodiversity conservation means, and making a shift

from a focus of conserving the current patterns of biodiversity to one that accepts

dynamism, different ecological patterns and processes in the future.

(4) Being explicit, transparent and scientifically rigorous in our treatment of risk and

uncertainty. There are many aspects of this uncertainty that are important for

systematic conservation planning, including spatial, temporal, and model uncertainty.

For example, Carvalho et al. (2011)accounted for model uncertainty in predicting

species distributions of Iberian herptiles and applied return-on-investment analyses

under various climate change scenarios to identify a set of robust conservation

investments. Wintle et al. (2011) used uncertainty analyses combined with simple

cost-effectiveness analyses to transparently evaluate different adaptation (ecological

management) investments for minimizing species loss due to climate change impacts.

Their approach allowed them to assess uncertainty in management costs, benefits, and

implementation and make management recommendations that are robust to a range of

uncertainty levels. Although these examples are focused on the uncertainty in

ecological or natural communities, a major challenge for developing conservation

plans that will accommodate future climate changes is the uncertainty involved in

anticipating potential climate change impacts on both natural and human

communities.

The strength of the approaches identified in this paper is that they are largely robust to

these uncertainties. By delivering conservation solutions that would be good for biodi-

versity regardless of future climates, they represent ‘‘no-regrets’’ approaches. Although

other approaches and strategies may be employed depending on the specific ways climate

change occurs on-the-ground, these five general approaches provide a good foundation for

regional biodiversity conservation.
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Conclusions

The five general approaches to climate change adaptation described here represent our best

estimate of an appropriate strategic planning response to the challenges of climate change.

They represent common sense approaches based on principles of ecology and conservation

biology, are as far as possible robust to future uncertainties, and can be integrated now into

systematic conservation planning efforts. Successful adaptation will require implementing

approaches such as these now, but also systematically evaluating and adjusting these

approaches as necessary (Grantham et al. 2010).

Provided that the assumptions and trade-offs of each approach are carefully evaluated,

we are confident these approaches either individually or in combination can strengthen

systematic conservation efforts and better position conservation agencies and organizations

to achieve long-term conservation goals in the face of climate change.
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